import numpy as np import random def mat_mult(A,B): return [[sum([A[i][m]*B[m][j] for m in range(len(A[0]))]) for j in range(len(B[0]))] for i in range(len(A))] class Neural_Network(object): # inspired from https://enlight.nyc/projects/neural-network/ def __init__(self, W1=None, W2=None): #parameters self.inputSize = 3 self.outputSize = 2 self.hiddenSize = 3 self.fitness = 0 #weights if not W1 : self.W1 = np.random.randn(self.inputSize, self.hiddenSize) # weights from input to hidden layer if not W2 : self.W2 = np.random.randn(self.hiddenSize, self.outputSize) # weights from hidden to output layer # self.w1 = [[random.random() for i in range(self.hiddenSize)] for i in range(self.inputSize)] # self.w2 = [[random.random() for i in range(self.outputSize)] for i in range(self.hiddenSize)] def predict(self, X): #forward propagation through our network self.z = np.dot(X, self.W1) # dot product of X (input) and first set of 3x2 weights self.z2 = self.sigmoid(self.z) # activation function self.z3 = np.dot(self.z2, self.W2) # dot product of hidden layer (z2) and second set of 3x1 weights o = self.sigmoid(self.z3) # final activation function # self.z = mat_mult(X, self.w1) # dot product of X (input) and first set of 3x2 weights # self.z2 = self.sigmoid(self.z) # activation function # self.z3 = mat_mult(self.z2, self.w2) # dot product of hidden layer (z2) and second set of 3x1 weights # o = self.sigmoid(self.z3) # final activation function return o def sigmoid(self, s): # activation function return 1/(1+np.exp(-s)) -0.5