import numpy as np import random def mat_mult(A, B): return [ [sum([A[i][m] * B[m][j] for m in range(len(A[0]))]) for j in range(len(B[0]))] for i in range(len(A)) ] class Neural_Network(object): # inspired from https://enlight.nyc/projects/neural-network/ def __init__(self, W1=None, W2=None): # parameters self.inputSize = 4 self.outputSize = 2 self.hiddenSize = 4 self.fitness = 0 # weights if W1 is not None: self.W1 = W1 else: self.W1 = np.random.randn( self.inputSize, self.hiddenSize ) # weights from input to hidden layer if W2 is not None: self.W2 = W2 else: self.W2 = np.random.randn( self.hiddenSize, self.outputSize ) # weights from hidden to output layer # self.w1 = [[random.random() for i in range(self.hiddenSize)] for i in range(self.inputSize)] # self.w2 = [[random.random() for i in range(self.outputSize)] for i in range(self.hiddenSize)] def predict(self, X): # forward propagation through our network self.z = np.dot( X, self.W1 ) # dot product of X (input) and first set of 3x2 weights self.z2 = self.sigmoid(self.z) # activation function self.z3 = np.dot( self.z2, self.W2 ) # dot product of hidden layer (z2) and second set of 3x1 weights o = self.sigmoid(self.z3) # final activation function # self.z = mat_mult(X, self.w1) # dot product of X (input) and first set of 3x2 weights # self.z2 = self.sigmoid(self.z) # activation function # self.z3 = mat_mult(self.z2, self.w2) # dot product of hidden layer (z2) and second set of 3x1 weights # o = self.sigmoid(self.z3) # final activation function return o def sigmoid(self, s): # activation function return 1 / (1 + np.exp(-s)) - 0.5