blacked all

This commit is contained in:
2019-10-28 11:52:03 +01:00
parent 132cec2445
commit f0580a988c
8 changed files with 213 additions and 178 deletions

Binary file not shown.

View File

@@ -1,37 +1,50 @@
import numpy as np
import random
def mat_mult(A,B):
return [[sum([A[i][m]*B[m][j] for m in range(len(A[0]))]) for j in range(len(B[0]))] for i in range(len(A))]
def mat_mult(A, B):
return [
[sum([A[i][m] * B[m][j] for m in range(len(A[0]))]) for j in range(len(B[0]))]
for i in range(len(A))
]
class Neural_Network(object):
# inspired from https://enlight.nyc/projects/neural-network/
def __init__(self, W1=None, W2=None):
#parameters
# parameters
self.inputSize = 3
self.outputSize = 2
self.hiddenSize = 3
self.fitness = 0
self.fitness = 0
#weights
# weights
if W1 is not None:
self.W1=W1
else :
self.W1 = np.random.randn(self.inputSize, self.hiddenSize) # weights from input to hidden layer
self.W1 = W1
else:
self.W1 = np.random.randn(
self.inputSize, self.hiddenSize
) # weights from input to hidden layer
if W2 is not None:
self.W2=W2
else :
self.W2 = np.random.randn(self.hiddenSize, self.outputSize) # weights from hidden to output layer
self.W2 = W2
else:
self.W2 = np.random.randn(
self.hiddenSize, self.outputSize
) # weights from hidden to output layer
# self.w1 = [[random.random() for i in range(self.hiddenSize)] for i in range(self.inputSize)]
# self.w2 = [[random.random() for i in range(self.outputSize)] for i in range(self.hiddenSize)]
def predict(self, X):
#forward propagation through our network
self.z = np.dot(X, self.W1) # dot product of X (input) and first set of 3x2 weights
self.z2 = self.sigmoid(self.z) # activation function
self.z3 = np.dot(self.z2, self.W2) # dot product of hidden layer (z2) and second set of 3x1 weights
o = self.sigmoid(self.z3) # final activation function
# forward propagation through our network
self.z = np.dot(
X, self.W1
) # dot product of X (input) and first set of 3x2 weights
self.z2 = self.sigmoid(self.z) # activation function
self.z3 = np.dot(
self.z2, self.W2
) # dot product of hidden layer (z2) and second set of 3x1 weights
o = self.sigmoid(self.z3) # final activation function
# self.z = mat_mult(X, self.w1) # dot product of X (input) and first set of 3x2 weights
# self.z2 = self.sigmoid(self.z) # activation function
# self.z3 = mat_mult(self.z2, self.w2) # dot product of hidden layer (z2) and second set of 3x1 weights
@@ -40,4 +53,4 @@ class Neural_Network(object):
def sigmoid(self, s):
# activation function
return 1/(1+np.exp(-s)) -0.5
return 1 / (1 + np.exp(-s)) - 0.5

133
car.py
View File

@@ -4,10 +4,20 @@ import random
import pygame
from brain import Neural_Network
from params import GY, CAR_MAX_SPEED, CAR_MAX_FITNESS, CAR_SIZE, CAR_STEERING_FACTOR, VISION_LENGTH, VISION_SPAN, THROTTLE_POWER, screen
from params import (
GY,
CAR_MAX_SPEED,
CAR_MAX_FITNESS,
CAR_SIZE,
CAR_STEERING_FACTOR,
VISION_LENGTH,
VISION_SPAN,
THROTTLE_POWER,
screen,
)
from trigo import angle_to_vector, get_line_feats, segments_intersection, distance
IMG = pygame.image.load("car20.png")#.convert()
IMG = pygame.image.load("car20.png") # .convert()
class Car(pygame.sprite.Sprite):
@@ -22,28 +32,28 @@ class Car(pygame.sprite.Sprite):
self.image = self.original_image
self.rect = self.image.get_rect()
self.vision_length = VISION_LENGTH # line liength
self.vision_span = VISION_SPAN # degrees
self.vision_length = VISION_LENGTH # line liength
self.vision_span = VISION_SPAN # degrees
self.draw_sensors = False
# lets add 3 sensors as a start
# lets add 3 sensors as a start
# 1 straight ahead
# 2 left 15°
# 3 right 15 °
# we will give each of them a max lenght to
# and we will eventually detect any line crossing the sensor and
# we will give each of them a max lenght to
# and we will eventually detect any line crossing the sensor and
# retain the min value as a distance to collision input
self.center_sensor = None
self.left_sensor = None
self.right_sensor = None
self.sensors = [self.left_sensor, self.center_sensor, self.right_sensor]
self.probes = [self.vision_length] *3
if brain :
self.probes = [self.vision_length] * 3
if brain:
self.brain = brain
else :
else:
self.brain = Neural_Network()
self.reset_car_pos()
self.update_sensors()
self.probe_brain()
@@ -52,9 +62,9 @@ class Car(pygame.sprite.Sprite):
def reset_car_pos(self):
self.rect.center = (
75 - int(random.random()*20) - 10,
GY -50 - int(random.random()*20)-10
)
75 - int(random.random() * 20) - 10,
GY - 50 - int(random.random() * 20) - 10,
)
self.speed = 1
self.heading = random.random() * 20
self.heading_change = random.random() * 30
@@ -62,53 +72,71 @@ class Car(pygame.sprite.Sprite):
def update_sensors(self):
center = self.rect.center
vc = angle_to_vector(self.heading)
self.center_sensor = [center, (int(self.vision_length * vc[0] + center[0]), int(-self.vision_length * vc[1] + center[1]))]
vl = angle_to_vector(self.heading+self.vision_span)
self.left_sensor = [center, (int(self.vision_length * vl[0] + center[0]), int(-self.vision_length * vl[1] + center[1]))]
vr = angle_to_vector(self.heading-self.vision_span)
self.right_sensor = [center, (int(self.vision_length * vr[0] + center[0]), int(-self.vision_length * vr[1] + center[1]))]
self.center_sensor = [
center,
(
int(self.vision_length * vc[0] + center[0]),
int(-self.vision_length * vc[1] + center[1]),
),
]
vl = angle_to_vector(self.heading + self.vision_span)
self.left_sensor = [
center,
(
int(self.vision_length * vl[0] + center[0]),
int(-self.vision_length * vl[1] + center[1]),
),
]
vr = angle_to_vector(self.heading - self.vision_span)
self.right_sensor = [
center,
(
int(self.vision_length * vr[0] + center[0]),
int(-self.vision_length * vr[1] + center[1]),
),
]
def update_position(self):
vec = angle_to_vector(self.heading)
old_center = self.rect.center
self.rect.center = (self.speed * vec[0] / 2 + old_center[0], -self.speed * vec[1] / 2 + old_center[1])
self.rect.center = (
self.speed * vec[0] / 2 + old_center[0],
-self.speed * vec[1] / 2 + old_center[1],
)
self.update_sensors()
self.distance_run += int(distance(old_center, self.rect.center))
self.brain.fitness = int(math.sqrt(self.distance_run))
def probe_lines_proximity(self, lines):
# print(self.center_sensor, lines[0])
self.probes = [self.vision_length*2] *3
for idx,sensor in enumerate([self.left_sensor, self.center_sensor, self.right_sensor]) :
for line in lines :
self.probes = [self.vision_length * 2] * 3
for idx, sensor in enumerate(
[self.left_sensor, self.center_sensor, self.right_sensor]
):
for line in lines:
ip = segments_intersection(sensor, line)
# print(ip)
if ip :
if self.draw_sensors :
pygame.draw.circle(screen, (125,125,255), ip, 4, 2)
dist = int(distance(ip,self.rect.center))
if ip:
if self.draw_sensors:
pygame.draw.circle(screen, (125, 125, 255), ip, 4, 2)
dist = int(distance(ip, self.rect.center))
self.probes[idx] = min(dist, self.probes[idx])
if dist < 1.2 * self.speed or self.speed < 0.01 :
if dist < 1.2 * self.speed or self.speed < 0.01:
self.run = False
self.speed = 0
# print(f'Car {id(self)} crashed')
return
# else :
# self.probes[idx] = self.vision_length * 2
# self.probes[idx] = self.vision_length * 2
# print(self.probes)
def probe_brain(self):
res = self.brain.predict(np.array(self.probes))
self.heading_change = res[0] * 15
self.throttle = res[1] * 10
self.throttle = res[1] * 10
def update(self):
# rotate
@@ -117,9 +145,9 @@ class Car(pygame.sprite.Sprite):
self.rect = self.image.get_rect()
self.rect.center = old_center
self.update_position()
if self.speed < 0.01 or self.brain.fitness > CAR_MAX_FITNESS :
if self.speed < 0.01 or self.brain.fitness > CAR_MAX_FITNESS:
self.run = False
print(f'Car {id(self)} crashed')
print(f"Car {id(self)} crashed")
# print(
# 'id', id(self),
# 'Speed', self.speed,
@@ -128,27 +156,30 @@ class Car(pygame.sprite.Sprite):
# 'heading change', self.heading_change,
# )
if self.speed :
self.heading += self.heading_change * CAR_STEERING_FACTOR / self.speed
if self.speed:
self.heading += self.heading_change * CAR_STEERING_FACTOR / self.speed
self.heading = self.heading % 360
self.speed += self.throttle #THROTTLE_POWER
self.speed += self.throttle # THROTTLE_POWER
# if self.throttle :
# self.speed += self.throttle #THROTTLE_POWER
# self.speed += self.throttle #THROTTLE_POWER
# else :
# self.speed -= self.throttle #THROTTLE_POWER
# self.speed -= self.throttle #THROTTLE_POWER
self.speed = max(0, self.speed)
self.speed = min(self.speed, CAR_MAX_SPEED)
super().update()
def show_features(self):
if self.draw_sensors:
pygame.draw.line(screen, (255,0,0), self.center_sensor[0], self.center_sensor[1])
pygame.draw.line(screen, (0,255,0), self.left_sensor[0], self.left_sensor[1])
pygame.draw.line(screen, (0,0,255), self.right_sensor[0], self.right_sensor[1])
pygame.draw.circle(screen, (125,255,125), self.rect.center, 4, 2)
pygame.draw.line(
screen, (255, 0, 0), self.center_sensor[0], self.center_sensor[1]
)
pygame.draw.line(
screen, (0, 255, 0), self.left_sensor[0], self.left_sensor[1]
)
pygame.draw.line(
screen, (0, 0, 255), self.right_sensor[0], self.right_sensor[1]
)
pygame.draw.circle(screen, (125, 255, 125), self.rect.center, 4, 2)

View File

@@ -3,67 +3,60 @@ import random
from brain import Neural_Network
from params import MUTATION_RATE, SELECTION_ALG, KWAY_TOURNAMENT_PLAYERS
def kway_selection(brains, exclude=None):
tourn_pool = []
best_play = None
if exclude :
if exclude:
brains = [x for x in brains if x != exclude]
for x in range(KWAY_TOURNAMENT_PLAYERS):
new_play = random.choice(brains)
while new_play in tourn_pool :
while new_play in tourn_pool:
new_play = random.choice(brains)
if not best_play or best_play.fitness < new_play.fitness :
if not best_play or best_play.fitness < new_play.fitness:
best_play = new_play
return best_play
def genetic_selection(brains):
parents_pool = []
half_pop = int(len(brains)/2)
half_pop = int(len(brains) / 2)
if SELECTION_ALG == "kway":
for x in range(half_pop) :
for x in range(half_pop):
p1 = kway_selection(brains)
p2 = kway_selection(brains, exclude=p1)
parents_pool.append([
p1,
p2
])
parents_pool.append([p1, p2])
elif SELECTION_ALG == "roulette" :
elif SELECTION_ALG == "roulette":
# does not seem very optimized... TBR
# constitute a list where every brain is represented
# proportionnally to its relative fitness
wheel = []
for b in brains :
for b in brains:
wheel += [b] * b.fitness
tot_fitness = len(wheel)
# selection of pool/2 pair of parents to reproduce
# selection of pool/2 pair of parents to reproduce
for _ in range(half_pop):
idx1 = round(random.random()*tot_fitness - 1)
idx2 = round(random.random()*tot_fitness - 1)
parents_pool.append([
wheel[idx1],
wheel[idx2]
])
idx1 = round(random.random() * tot_fitness - 1)
idx2 = round(random.random() * tot_fitness - 1)
parents_pool.append([wheel[idx1], wheel[idx2]])
return parents_pool
def cross_mutate_genes(p1_gene, p2_gene):
child = []
p1_gene = list(p1_gene)
p2_gene = list(p1_gene)
for idx,x in enumerate(p2_gene):
if random.random() > 0.5 :
for idx, x in enumerate(p2_gene):
if random.random() > 0.5:
choice = p1_gene[idx]
else :
else:
choice = p2_gene[idx]
# Mutation
if random.random() < MUTATION_RATE :
if random.random() < MUTATION_RATE:
choice[random.randint(0, len(choice) - 1)] = random.random()
print("Mutation !")
child.append(choice)
@@ -73,7 +66,7 @@ def cross_mutate_genes(p1_gene, p2_gene):
def genetic_reproduction(parents_pool):
# every pair of parents will produce a mixed child
new_pop = []
for [p1,p2] in parents_pool:
for [p1, p2] in parents_pool:
W1_kid = cross_mutate_genes(p1.W1, p2.W1)
W2_kid = cross_mutate_genes(p1.W2, p2.W2)
c_brain1 = Neural_Network(W1=W1_kid, W2=W2_kid)
@@ -81,7 +74,3 @@ def genetic_reproduction(parents_pool):
new_pop.append(c_brain1)
new_pop.append(c_brain2)
return new_pop

32
main.py
View File

@@ -10,15 +10,13 @@ from maps import map1
from params import CELL_COLOR, screen
#https://medium.com/intel-student-ambassadors/demystifying-genetic-algorithms-to-enhance-neural-networks-cde902384b6e
# https://medium.com/intel-student-ambassadors/demystifying-genetic-algorithms-to-enhance-neural-networks-cde902384b6e
clock = pygame.time.Clock()
map_lines = map1
all_cars = pygame.sprite.Group()
for x in range(100):
@@ -28,47 +26,47 @@ for x in range(100):
def run_round(all_cars):
running_cars = True
while running_cars :
while running_cars:
running_cars = False
screen.fill(CELL_COLOR)
all_cars.draw(screen)
for c in all_cars :
for c in all_cars:
c.show_features()
if c.run :
if c.run:
running_cars = True
c.probe_lines_proximity(map_lines)
c.probe_brain()
c.update()
for line in map_lines :
pygame.draw.line(screen, (255,255,255), line[0], line[1])
for line in map_lines:
pygame.draw.line(screen, (255, 255, 255), line[0], line[1])
pygame.display.flip()
clock.tick(48)
# for c in all_cars :
# print(f"Car {id(c)} Fitness : {c.brain.fitness})")
print('Collecting brains')
print("Collecting brains")
brains = [c.brain for c in all_cars]
print(f"Max fitness = {max([b.fitness for b in brains])}" )
print(f"Avg fitness = {sum([b.fitness for b in brains])/len(brains)}" )
print('selecting')
print(f"Max fitness = {max([b.fitness for b in brains])}")
print(f"Avg fitness = {sum([b.fitness for b in brains])/len(brains)}")
print("selecting")
parents_pool = genetic_selection(brains)
# import ipdb; ipdb.set_trace()
print("breeding")
new_brains = genetic_reproduction(parents_pool)
print(f'building {len(new_brains)} cars with new brains')
print(f"building {len(new_brains)} cars with new brains")
all_cars.empty()
for b in new_brains :
for b in new_brains:
all_cars.add(Car(brain=b))
print("Waiting before new run")
for x in range(1) :
for x in range(1):
time.sleep(0.5)
pygame.display.flip()
while True :
while True:
run_round(all_cars)
pygame.display.flip()
clock.tick(24)

58
maps.py
View File

@@ -1,40 +1,42 @@
from params import GX, GY
def generate_map_1() :
def generate_map_1():
path = [
(25, int(GY-25)),
(int(GX/2), int(GY-25)),
(int(GX/2 + 75), int(GY-150)),
(int(GX/2 + 150), int(GY-150)),
(int(GX -75), int(GY/2)),
(int(GX - 100), int(GY/2 - 75)),
(int(GX - 100), int(GY/2 - 150)),
(int(GX -50), int( GY/4 )),
(int(3*GX/4 - 50), int(50)),
(int(50), int(50)),
(int(100), int(GY/2)),
(25, int(GY-25)),
(25, int(GY - 25)),
(int(GX / 2), int(GY - 25)),
(int(GX / 2 + 75), int(GY - 150)),
(int(GX / 2 + 150), int(GY - 150)),
(int(GX - 75), int(GY / 2)),
(int(GX - 100), int(GY / 2 - 75)),
(int(GX - 100), int(GY / 2 - 150)),
(int(GX - 50), int(GY / 4)),
(int(3 * GX / 4 - 50), int(50)),
(int(50), int(50)),
(int(100), int(GY / 2)),
(25, int(GY - 25)),
]
path2 = [
(100, int(GY-85)),
(int(GX/2 - 50 ), int(GY-85)),
(int(GX/2 + 50), int(GY-210)),
(int(GX/2 + 110), int(GY-210)),
(int(GX - 170), int(GY/2 + 30)),
(int(GX - 200 ), int(GY/2 - 20)),
(int(GX - 200), int(GY/2 - 200)),
(int(GX -170), int( GY/4 -20)),
(int(3*GX/4 - 100), int(120)),
(int(120), int(120)),
(int(175), int(GY/2)),
(100, int(GY-85)),
(100, int(GY - 85)),
(int(GX / 2 - 50), int(GY - 85)),
(int(GX / 2 + 50), int(GY - 210)),
(int(GX / 2 + 110), int(GY - 210)),
(int(GX - 170), int(GY / 2 + 30)),
(int(GX - 200), int(GY / 2 - 20)),
(int(GX - 200), int(GY / 2 - 200)),
(int(GX - 170), int(GY / 4 - 20)),
(int(3 * GX / 4 - 100), int(120)),
(int(120), int(120)),
(int(175), int(GY / 2)),
(100, int(GY - 85)),
]
lines = [[path[i], path[i+1]] for i in range(len(path)-1)]
lines2 = [[path2[i], path2[i+1]] for i in range(len(path2)-1)]
lines = [[path[i], path[i + 1]] for i in range(len(path) - 1)]
lines2 = [[path2[i], path2[i + 1]] for i in range(len(path2) - 1)]
lines = lines + lines2
return lines
map1 = generate_map_1()
map1 = generate_map_1()

View File

@@ -1,21 +1,21 @@
import pygame
from pygame.locals import HWSURFACE, DOUBLEBUF
FLAGS = HWSURFACE | DOUBLEBUF #| FULLSCREEN
FLAGS = HWSURFACE | DOUBLEBUF # | FULLSCREEN
GX = 1000
GY = 1000
CELL_COLOR = (80,80,80)
CAR_SIZE = 20
CAR_MAX_SPEED = 100
CAR_MAX_FITNESS = 100
CAR_STEERING_FACTOR = 10
VISION_LENGTH = 60
VISION_SPAN = 35 # degrees
THROTTLE_POWER = 3
GX = 1000
GY = 1000
CELL_COLOR = (80, 80, 80)
CAR_SIZE = 20
CAR_MAX_SPEED = 100
CAR_MAX_FITNESS = 100
CAR_STEERING_FACTOR = 10
VISION_LENGTH = 60
VISION_SPAN = 35 # degrees
THROTTLE_POWER = 3
MUTATION_RATE = 0.01
SELECTION_ALG = "kway" # roulette
MUTATION_RATE = 0.01
SELECTION_ALG = "kway" # roulette
KWAY_TOURNAMENT_PLAYERS = 3
pygame.init()

View File

@@ -1,45 +1,47 @@
#!/usr/bin/env python
import math
def angle_to_vector(angle):
angle=angle*math.pi/180
angle = angle * math.pi / 180
return [math.cos(angle), math.sin(angle)]
def get_line_feats(point1, point2):
x1,y1 = point1
x2,y2 = point2
x1, y1 = point1
x2, y2 = point2
# if x1 == x2 :
# x1=x1+1
a = (y1-y2)/(x1-x2)
a = (y1 - y2) / (x1 - x2)
b = y2 - a * x2
return a,b
return a, b
def segments_intersection(line1, line2):
p1,p2 = line1
p3,p4 = line2
if p1[0] == p2[0] :
p1, p2 = line1
p3, p4 = line2
if p1[0] == p2[0]:
p1 = (p1[0] + 1, p1[1])
if p3[0] == p4[0] :
if p3[0] == p4[0]:
p3 = (p3[0] + 1, p3[1])
a1, b1 = get_line_feats(p1, p2)
a2, b2 = get_line_feats(p3, p4)
a1,b1 = get_line_feats(p1,p2)
a2,b2 = get_line_feats(p3,p4)
if a1 == a2:
return None # parrallel lines
if a1==a2 :
return None # parrallel lines
x = (b2-b1)/(a1-a2)
x = (b2 - b1) / (a1 - a2)
if min(p1[0], p2[0]) <= x <= max (p1[0], p2[0]) and min(p3[0], p4[0]) <= x <= max (p3[0], p4[0]) :
if min(p1[0], p2[0]) <= x <= max(p1[0], p2[0]) and min(p3[0], p4[0]) <= x <= max(
p3[0], p4[0]
):
y = a1 * x + b1
return x,y
else :
return None # intersect is outside segments
return x, y
else:
return None # intersect is outside segments
def distance(point1, point2):
return math.hypot(point1[0] - point2[0], point1[1] - point2[1])
return math.hypot(point1[0] - point2[0], point1[1] - point2[1])