blacked all
This commit is contained in:
BIN
Confirmation_PP_FR8039550.pdf
Normal file
BIN
Confirmation_PP_FR8039550.pdf
Normal file
Binary file not shown.
49
brain.py
49
brain.py
@@ -1,37 +1,50 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
import random
|
import random
|
||||||
|
|
||||||
def mat_mult(A,B):
|
|
||||||
return [[sum([A[i][m]*B[m][j] for m in range(len(A[0]))]) for j in range(len(B[0]))] for i in range(len(A))]
|
def mat_mult(A, B):
|
||||||
|
return [
|
||||||
|
[sum([A[i][m] * B[m][j] for m in range(len(A[0]))]) for j in range(len(B[0]))]
|
||||||
|
for i in range(len(A))
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
class Neural_Network(object):
|
class Neural_Network(object):
|
||||||
# inspired from https://enlight.nyc/projects/neural-network/
|
# inspired from https://enlight.nyc/projects/neural-network/
|
||||||
def __init__(self, W1=None, W2=None):
|
def __init__(self, W1=None, W2=None):
|
||||||
#parameters
|
# parameters
|
||||||
self.inputSize = 3
|
self.inputSize = 3
|
||||||
self.outputSize = 2
|
self.outputSize = 2
|
||||||
self.hiddenSize = 3
|
self.hiddenSize = 3
|
||||||
self.fitness = 0
|
self.fitness = 0
|
||||||
|
|
||||||
#weights
|
# weights
|
||||||
if W1 is not None:
|
if W1 is not None:
|
||||||
self.W1=W1
|
self.W1 = W1
|
||||||
else :
|
else:
|
||||||
self.W1 = np.random.randn(self.inputSize, self.hiddenSize) # weights from input to hidden layer
|
self.W1 = np.random.randn(
|
||||||
|
self.inputSize, self.hiddenSize
|
||||||
|
) # weights from input to hidden layer
|
||||||
|
|
||||||
if W2 is not None:
|
if W2 is not None:
|
||||||
self.W2=W2
|
self.W2 = W2
|
||||||
else :
|
else:
|
||||||
self.W2 = np.random.randn(self.hiddenSize, self.outputSize) # weights from hidden to output layer
|
self.W2 = np.random.randn(
|
||||||
|
self.hiddenSize, self.outputSize
|
||||||
|
) # weights from hidden to output layer
|
||||||
# self.w1 = [[random.random() for i in range(self.hiddenSize)] for i in range(self.inputSize)]
|
# self.w1 = [[random.random() for i in range(self.hiddenSize)] for i in range(self.inputSize)]
|
||||||
# self.w2 = [[random.random() for i in range(self.outputSize)] for i in range(self.hiddenSize)]
|
# self.w2 = [[random.random() for i in range(self.outputSize)] for i in range(self.hiddenSize)]
|
||||||
|
|
||||||
def predict(self, X):
|
def predict(self, X):
|
||||||
#forward propagation through our network
|
# forward propagation through our network
|
||||||
self.z = np.dot(X, self.W1) # dot product of X (input) and first set of 3x2 weights
|
self.z = np.dot(
|
||||||
self.z2 = self.sigmoid(self.z) # activation function
|
X, self.W1
|
||||||
self.z3 = np.dot(self.z2, self.W2) # dot product of hidden layer (z2) and second set of 3x1 weights
|
) # dot product of X (input) and first set of 3x2 weights
|
||||||
o = self.sigmoid(self.z3) # final activation function
|
self.z2 = self.sigmoid(self.z) # activation function
|
||||||
|
self.z3 = np.dot(
|
||||||
|
self.z2, self.W2
|
||||||
|
) # dot product of hidden layer (z2) and second set of 3x1 weights
|
||||||
|
o = self.sigmoid(self.z3) # final activation function
|
||||||
# self.z = mat_mult(X, self.w1) # dot product of X (input) and first set of 3x2 weights
|
# self.z = mat_mult(X, self.w1) # dot product of X (input) and first set of 3x2 weights
|
||||||
# self.z2 = self.sigmoid(self.z) # activation function
|
# self.z2 = self.sigmoid(self.z) # activation function
|
||||||
# self.z3 = mat_mult(self.z2, self.w2) # dot product of hidden layer (z2) and second set of 3x1 weights
|
# self.z3 = mat_mult(self.z2, self.w2) # dot product of hidden layer (z2) and second set of 3x1 weights
|
||||||
@@ -40,4 +53,4 @@ class Neural_Network(object):
|
|||||||
|
|
||||||
def sigmoid(self, s):
|
def sigmoid(self, s):
|
||||||
# activation function
|
# activation function
|
||||||
return 1/(1+np.exp(-s)) -0.5
|
return 1 / (1 + np.exp(-s)) - 0.5
|
||||||
|
|||||||
133
car.py
133
car.py
@@ -4,10 +4,20 @@ import random
|
|||||||
import pygame
|
import pygame
|
||||||
|
|
||||||
from brain import Neural_Network
|
from brain import Neural_Network
|
||||||
from params import GY, CAR_MAX_SPEED, CAR_MAX_FITNESS, CAR_SIZE, CAR_STEERING_FACTOR, VISION_LENGTH, VISION_SPAN, THROTTLE_POWER, screen
|
from params import (
|
||||||
|
GY,
|
||||||
|
CAR_MAX_SPEED,
|
||||||
|
CAR_MAX_FITNESS,
|
||||||
|
CAR_SIZE,
|
||||||
|
CAR_STEERING_FACTOR,
|
||||||
|
VISION_LENGTH,
|
||||||
|
VISION_SPAN,
|
||||||
|
THROTTLE_POWER,
|
||||||
|
screen,
|
||||||
|
)
|
||||||
from trigo import angle_to_vector, get_line_feats, segments_intersection, distance
|
from trigo import angle_to_vector, get_line_feats, segments_intersection, distance
|
||||||
|
|
||||||
IMG = pygame.image.load("car20.png")#.convert()
|
IMG = pygame.image.load("car20.png") # .convert()
|
||||||
|
|
||||||
|
|
||||||
class Car(pygame.sprite.Sprite):
|
class Car(pygame.sprite.Sprite):
|
||||||
@@ -22,28 +32,28 @@ class Car(pygame.sprite.Sprite):
|
|||||||
self.image = self.original_image
|
self.image = self.original_image
|
||||||
|
|
||||||
self.rect = self.image.get_rect()
|
self.rect = self.image.get_rect()
|
||||||
self.vision_length = VISION_LENGTH # line liength
|
self.vision_length = VISION_LENGTH # line liength
|
||||||
self.vision_span = VISION_SPAN # degrees
|
self.vision_span = VISION_SPAN # degrees
|
||||||
self.draw_sensors = False
|
self.draw_sensors = False
|
||||||
|
|
||||||
# lets add 3 sensors as a start
|
# lets add 3 sensors as a start
|
||||||
# 1 straight ahead
|
# 1 straight ahead
|
||||||
# 2 left 15°
|
# 2 left 15°
|
||||||
# 3 right 15 °
|
# 3 right 15 °
|
||||||
# we will give each of them a max lenght to
|
# we will give each of them a max lenght to
|
||||||
# and we will eventually detect any line crossing the sensor and
|
# and we will eventually detect any line crossing the sensor and
|
||||||
# retain the min value as a distance to collision input
|
# retain the min value as a distance to collision input
|
||||||
self.center_sensor = None
|
self.center_sensor = None
|
||||||
self.left_sensor = None
|
self.left_sensor = None
|
||||||
self.right_sensor = None
|
self.right_sensor = None
|
||||||
self.sensors = [self.left_sensor, self.center_sensor, self.right_sensor]
|
self.sensors = [self.left_sensor, self.center_sensor, self.right_sensor]
|
||||||
self.probes = [self.vision_length] *3
|
self.probes = [self.vision_length] * 3
|
||||||
|
|
||||||
if brain :
|
if brain:
|
||||||
self.brain = brain
|
self.brain = brain
|
||||||
else :
|
else:
|
||||||
self.brain = Neural_Network()
|
self.brain = Neural_Network()
|
||||||
|
|
||||||
self.reset_car_pos()
|
self.reset_car_pos()
|
||||||
self.update_sensors()
|
self.update_sensors()
|
||||||
self.probe_brain()
|
self.probe_brain()
|
||||||
@@ -52,9 +62,9 @@ class Car(pygame.sprite.Sprite):
|
|||||||
|
|
||||||
def reset_car_pos(self):
|
def reset_car_pos(self):
|
||||||
self.rect.center = (
|
self.rect.center = (
|
||||||
75 - int(random.random()*20) - 10,
|
75 - int(random.random() * 20) - 10,
|
||||||
GY -50 - int(random.random()*20)-10
|
GY - 50 - int(random.random() * 20) - 10,
|
||||||
)
|
)
|
||||||
self.speed = 1
|
self.speed = 1
|
||||||
self.heading = random.random() * 20
|
self.heading = random.random() * 20
|
||||||
self.heading_change = random.random() * 30
|
self.heading_change = random.random() * 30
|
||||||
@@ -62,53 +72,71 @@ class Car(pygame.sprite.Sprite):
|
|||||||
def update_sensors(self):
|
def update_sensors(self):
|
||||||
center = self.rect.center
|
center = self.rect.center
|
||||||
vc = angle_to_vector(self.heading)
|
vc = angle_to_vector(self.heading)
|
||||||
self.center_sensor = [center, (int(self.vision_length * vc[0] + center[0]), int(-self.vision_length * vc[1] + center[1]))]
|
self.center_sensor = [
|
||||||
|
center,
|
||||||
vl = angle_to_vector(self.heading+self.vision_span)
|
(
|
||||||
self.left_sensor = [center, (int(self.vision_length * vl[0] + center[0]), int(-self.vision_length * vl[1] + center[1]))]
|
int(self.vision_length * vc[0] + center[0]),
|
||||||
|
int(-self.vision_length * vc[1] + center[1]),
|
||||||
vr = angle_to_vector(self.heading-self.vision_span)
|
),
|
||||||
self.right_sensor = [center, (int(self.vision_length * vr[0] + center[0]), int(-self.vision_length * vr[1] + center[1]))]
|
]
|
||||||
|
|
||||||
|
vl = angle_to_vector(self.heading + self.vision_span)
|
||||||
|
self.left_sensor = [
|
||||||
|
center,
|
||||||
|
(
|
||||||
|
int(self.vision_length * vl[0] + center[0]),
|
||||||
|
int(-self.vision_length * vl[1] + center[1]),
|
||||||
|
),
|
||||||
|
]
|
||||||
|
|
||||||
|
vr = angle_to_vector(self.heading - self.vision_span)
|
||||||
|
self.right_sensor = [
|
||||||
|
center,
|
||||||
|
(
|
||||||
|
int(self.vision_length * vr[0] + center[0]),
|
||||||
|
int(-self.vision_length * vr[1] + center[1]),
|
||||||
|
),
|
||||||
|
]
|
||||||
|
|
||||||
def update_position(self):
|
def update_position(self):
|
||||||
vec = angle_to_vector(self.heading)
|
vec = angle_to_vector(self.heading)
|
||||||
old_center = self.rect.center
|
old_center = self.rect.center
|
||||||
self.rect.center = (self.speed * vec[0] / 2 + old_center[0], -self.speed * vec[1] / 2 + old_center[1])
|
self.rect.center = (
|
||||||
|
self.speed * vec[0] / 2 + old_center[0],
|
||||||
|
-self.speed * vec[1] / 2 + old_center[1],
|
||||||
|
)
|
||||||
self.update_sensors()
|
self.update_sensors()
|
||||||
self.distance_run += int(distance(old_center, self.rect.center))
|
self.distance_run += int(distance(old_center, self.rect.center))
|
||||||
self.brain.fitness = int(math.sqrt(self.distance_run))
|
self.brain.fitness = int(math.sqrt(self.distance_run))
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
def probe_lines_proximity(self, lines):
|
def probe_lines_proximity(self, lines):
|
||||||
# print(self.center_sensor, lines[0])
|
# print(self.center_sensor, lines[0])
|
||||||
self.probes = [self.vision_length*2] *3
|
self.probes = [self.vision_length * 2] * 3
|
||||||
for idx,sensor in enumerate([self.left_sensor, self.center_sensor, self.right_sensor]) :
|
for idx, sensor in enumerate(
|
||||||
for line in lines :
|
[self.left_sensor, self.center_sensor, self.right_sensor]
|
||||||
|
):
|
||||||
|
for line in lines:
|
||||||
ip = segments_intersection(sensor, line)
|
ip = segments_intersection(sensor, line)
|
||||||
# print(ip)
|
# print(ip)
|
||||||
if ip :
|
if ip:
|
||||||
if self.draw_sensors :
|
if self.draw_sensors:
|
||||||
pygame.draw.circle(screen, (125,125,255), ip, 4, 2)
|
pygame.draw.circle(screen, (125, 125, 255), ip, 4, 2)
|
||||||
dist = int(distance(ip,self.rect.center))
|
dist = int(distance(ip, self.rect.center))
|
||||||
self.probes[idx] = min(dist, self.probes[idx])
|
self.probes[idx] = min(dist, self.probes[idx])
|
||||||
if dist < 1.2 * self.speed or self.speed < 0.01 :
|
if dist < 1.2 * self.speed or self.speed < 0.01:
|
||||||
self.run = False
|
self.run = False
|
||||||
self.speed = 0
|
self.speed = 0
|
||||||
# print(f'Car {id(self)} crashed')
|
# print(f'Car {id(self)} crashed')
|
||||||
return
|
return
|
||||||
|
|
||||||
# else :
|
# else :
|
||||||
# self.probes[idx] = self.vision_length * 2
|
# self.probes[idx] = self.vision_length * 2
|
||||||
# print(self.probes)
|
# print(self.probes)
|
||||||
|
|
||||||
|
|
||||||
def probe_brain(self):
|
def probe_brain(self):
|
||||||
res = self.brain.predict(np.array(self.probes))
|
res = self.brain.predict(np.array(self.probes))
|
||||||
self.heading_change = res[0] * 15
|
self.heading_change = res[0] * 15
|
||||||
self.throttle = res[1] * 10
|
self.throttle = res[1] * 10
|
||||||
|
|
||||||
|
|
||||||
def update(self):
|
def update(self):
|
||||||
# rotate
|
# rotate
|
||||||
@@ -117,9 +145,9 @@ class Car(pygame.sprite.Sprite):
|
|||||||
self.rect = self.image.get_rect()
|
self.rect = self.image.get_rect()
|
||||||
self.rect.center = old_center
|
self.rect.center = old_center
|
||||||
self.update_position()
|
self.update_position()
|
||||||
if self.speed < 0.01 or self.brain.fitness > CAR_MAX_FITNESS :
|
if self.speed < 0.01 or self.brain.fitness > CAR_MAX_FITNESS:
|
||||||
self.run = False
|
self.run = False
|
||||||
print(f'Car {id(self)} crashed')
|
print(f"Car {id(self)} crashed")
|
||||||
# print(
|
# print(
|
||||||
# 'id', id(self),
|
# 'id', id(self),
|
||||||
# 'Speed', self.speed,
|
# 'Speed', self.speed,
|
||||||
@@ -128,27 +156,30 @@ class Car(pygame.sprite.Sprite):
|
|||||||
# 'heading change', self.heading_change,
|
# 'heading change', self.heading_change,
|
||||||
# )
|
# )
|
||||||
|
|
||||||
if self.speed :
|
if self.speed:
|
||||||
self.heading += self.heading_change * CAR_STEERING_FACTOR / self.speed
|
self.heading += self.heading_change * CAR_STEERING_FACTOR / self.speed
|
||||||
self.heading = self.heading % 360
|
self.heading = self.heading % 360
|
||||||
|
|
||||||
self.speed += self.throttle #THROTTLE_POWER
|
self.speed += self.throttle # THROTTLE_POWER
|
||||||
# if self.throttle :
|
# if self.throttle :
|
||||||
# self.speed += self.throttle #THROTTLE_POWER
|
# self.speed += self.throttle #THROTTLE_POWER
|
||||||
# else :
|
# else :
|
||||||
# self.speed -= self.throttle #THROTTLE_POWER
|
# self.speed -= self.throttle #THROTTLE_POWER
|
||||||
|
|
||||||
self.speed = max(0, self.speed)
|
self.speed = max(0, self.speed)
|
||||||
self.speed = min(self.speed, CAR_MAX_SPEED)
|
self.speed = min(self.speed, CAR_MAX_SPEED)
|
||||||
|
|
||||||
super().update()
|
super().update()
|
||||||
|
|
||||||
|
|
||||||
def show_features(self):
|
def show_features(self):
|
||||||
if self.draw_sensors:
|
if self.draw_sensors:
|
||||||
pygame.draw.line(screen, (255,0,0), self.center_sensor[0], self.center_sensor[1])
|
pygame.draw.line(
|
||||||
pygame.draw.line(screen, (0,255,0), self.left_sensor[0], self.left_sensor[1])
|
screen, (255, 0, 0), self.center_sensor[0], self.center_sensor[1]
|
||||||
pygame.draw.line(screen, (0,0,255), self.right_sensor[0], self.right_sensor[1])
|
)
|
||||||
pygame.draw.circle(screen, (125,255,125), self.rect.center, 4, 2)
|
pygame.draw.line(
|
||||||
|
screen, (0, 255, 0), self.left_sensor[0], self.left_sensor[1]
|
||||||
|
)
|
||||||
|
pygame.draw.line(
|
||||||
|
screen, (0, 0, 255), self.right_sensor[0], self.right_sensor[1]
|
||||||
|
)
|
||||||
|
pygame.draw.circle(screen, (125, 255, 125), self.rect.center, 4, 2)
|
||||||
|
|||||||
51
genetics.py
51
genetics.py
@@ -3,67 +3,60 @@ import random
|
|||||||
from brain import Neural_Network
|
from brain import Neural_Network
|
||||||
from params import MUTATION_RATE, SELECTION_ALG, KWAY_TOURNAMENT_PLAYERS
|
from params import MUTATION_RATE, SELECTION_ALG, KWAY_TOURNAMENT_PLAYERS
|
||||||
|
|
||||||
|
|
||||||
def kway_selection(brains, exclude=None):
|
def kway_selection(brains, exclude=None):
|
||||||
tourn_pool = []
|
tourn_pool = []
|
||||||
best_play = None
|
best_play = None
|
||||||
if exclude :
|
if exclude:
|
||||||
brains = [x for x in brains if x != exclude]
|
brains = [x for x in brains if x != exclude]
|
||||||
for x in range(KWAY_TOURNAMENT_PLAYERS):
|
for x in range(KWAY_TOURNAMENT_PLAYERS):
|
||||||
new_play = random.choice(brains)
|
new_play = random.choice(brains)
|
||||||
while new_play in tourn_pool :
|
while new_play in tourn_pool:
|
||||||
new_play = random.choice(brains)
|
new_play = random.choice(brains)
|
||||||
if not best_play or best_play.fitness < new_play.fitness :
|
if not best_play or best_play.fitness < new_play.fitness:
|
||||||
best_play = new_play
|
best_play = new_play
|
||||||
return best_play
|
return best_play
|
||||||
|
|
||||||
|
|
||||||
def genetic_selection(brains):
|
def genetic_selection(brains):
|
||||||
parents_pool = []
|
parents_pool = []
|
||||||
half_pop = int(len(brains)/2)
|
half_pop = int(len(brains) / 2)
|
||||||
|
|
||||||
if SELECTION_ALG == "kway":
|
if SELECTION_ALG == "kway":
|
||||||
for x in range(half_pop) :
|
for x in range(half_pop):
|
||||||
p1 = kway_selection(brains)
|
p1 = kway_selection(brains)
|
||||||
p2 = kway_selection(brains, exclude=p1)
|
p2 = kway_selection(brains, exclude=p1)
|
||||||
parents_pool.append([
|
parents_pool.append([p1, p2])
|
||||||
p1,
|
|
||||||
p2
|
|
||||||
])
|
|
||||||
|
|
||||||
|
elif SELECTION_ALG == "roulette":
|
||||||
|
|
||||||
elif SELECTION_ALG == "roulette" :
|
|
||||||
# does not seem very optimized... TBR
|
# does not seem very optimized... TBR
|
||||||
# constitute a list where every brain is represented
|
# constitute a list where every brain is represented
|
||||||
# proportionnally to its relative fitness
|
# proportionnally to its relative fitness
|
||||||
wheel = []
|
wheel = []
|
||||||
for b in brains :
|
for b in brains:
|
||||||
wheel += [b] * b.fitness
|
wheel += [b] * b.fitness
|
||||||
|
|
||||||
|
|
||||||
tot_fitness = len(wheel)
|
tot_fitness = len(wheel)
|
||||||
|
|
||||||
# selection of pool/2 pair of parents to reproduce
|
# selection of pool/2 pair of parents to reproduce
|
||||||
for _ in range(half_pop):
|
for _ in range(half_pop):
|
||||||
idx1 = round(random.random()*tot_fitness - 1)
|
idx1 = round(random.random() * tot_fitness - 1)
|
||||||
idx2 = round(random.random()*tot_fitness - 1)
|
idx2 = round(random.random() * tot_fitness - 1)
|
||||||
parents_pool.append([
|
parents_pool.append([wheel[idx1], wheel[idx2]])
|
||||||
wheel[idx1],
|
|
||||||
wheel[idx2]
|
|
||||||
])
|
|
||||||
return parents_pool
|
return parents_pool
|
||||||
|
|
||||||
|
|
||||||
def cross_mutate_genes(p1_gene, p2_gene):
|
def cross_mutate_genes(p1_gene, p2_gene):
|
||||||
child = []
|
child = []
|
||||||
p1_gene = list(p1_gene)
|
p1_gene = list(p1_gene)
|
||||||
p2_gene = list(p1_gene)
|
p2_gene = list(p1_gene)
|
||||||
for idx,x in enumerate(p2_gene):
|
for idx, x in enumerate(p2_gene):
|
||||||
if random.random() > 0.5 :
|
if random.random() > 0.5:
|
||||||
choice = p1_gene[idx]
|
choice = p1_gene[idx]
|
||||||
else :
|
else:
|
||||||
choice = p2_gene[idx]
|
choice = p2_gene[idx]
|
||||||
# Mutation
|
# Mutation
|
||||||
if random.random() < MUTATION_RATE :
|
if random.random() < MUTATION_RATE:
|
||||||
choice[random.randint(0, len(choice) - 1)] = random.random()
|
choice[random.randint(0, len(choice) - 1)] = random.random()
|
||||||
print("Mutation !")
|
print("Mutation !")
|
||||||
child.append(choice)
|
child.append(choice)
|
||||||
@@ -73,7 +66,7 @@ def cross_mutate_genes(p1_gene, p2_gene):
|
|||||||
def genetic_reproduction(parents_pool):
|
def genetic_reproduction(parents_pool):
|
||||||
# every pair of parents will produce a mixed child
|
# every pair of parents will produce a mixed child
|
||||||
new_pop = []
|
new_pop = []
|
||||||
for [p1,p2] in parents_pool:
|
for [p1, p2] in parents_pool:
|
||||||
W1_kid = cross_mutate_genes(p1.W1, p2.W1)
|
W1_kid = cross_mutate_genes(p1.W1, p2.W1)
|
||||||
W2_kid = cross_mutate_genes(p1.W2, p2.W2)
|
W2_kid = cross_mutate_genes(p1.W2, p2.W2)
|
||||||
c_brain1 = Neural_Network(W1=W1_kid, W2=W2_kid)
|
c_brain1 = Neural_Network(W1=W1_kid, W2=W2_kid)
|
||||||
@@ -81,7 +74,3 @@ def genetic_reproduction(parents_pool):
|
|||||||
new_pop.append(c_brain1)
|
new_pop.append(c_brain1)
|
||||||
new_pop.append(c_brain2)
|
new_pop.append(c_brain2)
|
||||||
return new_pop
|
return new_pop
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
32
main.py
32
main.py
@@ -10,15 +10,13 @@ from maps import map1
|
|||||||
from params import CELL_COLOR, screen
|
from params import CELL_COLOR, screen
|
||||||
|
|
||||||
|
|
||||||
|
# https://medium.com/intel-student-ambassadors/demystifying-genetic-algorithms-to-enhance-neural-networks-cde902384b6e
|
||||||
#https://medium.com/intel-student-ambassadors/demystifying-genetic-algorithms-to-enhance-neural-networks-cde902384b6e
|
|
||||||
clock = pygame.time.Clock()
|
clock = pygame.time.Clock()
|
||||||
|
|
||||||
|
|
||||||
map_lines = map1
|
map_lines = map1
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
all_cars = pygame.sprite.Group()
|
all_cars = pygame.sprite.Group()
|
||||||
|
|
||||||
for x in range(100):
|
for x in range(100):
|
||||||
@@ -28,47 +26,47 @@ for x in range(100):
|
|||||||
|
|
||||||
def run_round(all_cars):
|
def run_round(all_cars):
|
||||||
running_cars = True
|
running_cars = True
|
||||||
while running_cars :
|
while running_cars:
|
||||||
running_cars = False
|
running_cars = False
|
||||||
screen.fill(CELL_COLOR)
|
screen.fill(CELL_COLOR)
|
||||||
all_cars.draw(screen)
|
all_cars.draw(screen)
|
||||||
for c in all_cars :
|
for c in all_cars:
|
||||||
c.show_features()
|
c.show_features()
|
||||||
if c.run :
|
if c.run:
|
||||||
running_cars = True
|
running_cars = True
|
||||||
c.probe_lines_proximity(map_lines)
|
c.probe_lines_proximity(map_lines)
|
||||||
c.probe_brain()
|
c.probe_brain()
|
||||||
c.update()
|
c.update()
|
||||||
|
|
||||||
for line in map_lines :
|
for line in map_lines:
|
||||||
pygame.draw.line(screen, (255,255,255), line[0], line[1])
|
pygame.draw.line(screen, (255, 255, 255), line[0], line[1])
|
||||||
|
|
||||||
pygame.display.flip()
|
pygame.display.flip()
|
||||||
clock.tick(48)
|
clock.tick(48)
|
||||||
|
|
||||||
# for c in all_cars :
|
# for c in all_cars :
|
||||||
# print(f"Car {id(c)} Fitness : {c.brain.fitness})")
|
# print(f"Car {id(c)} Fitness : {c.brain.fitness})")
|
||||||
|
|
||||||
print('Collecting brains')
|
print("Collecting brains")
|
||||||
brains = [c.brain for c in all_cars]
|
brains = [c.brain for c in all_cars]
|
||||||
print(f"Max fitness = {max([b.fitness for b in brains])}" )
|
print(f"Max fitness = {max([b.fitness for b in brains])}")
|
||||||
print(f"Avg fitness = {sum([b.fitness for b in brains])/len(brains)}" )
|
print(f"Avg fitness = {sum([b.fitness for b in brains])/len(brains)}")
|
||||||
print('selecting')
|
print("selecting")
|
||||||
parents_pool = genetic_selection(brains)
|
parents_pool = genetic_selection(brains)
|
||||||
# import ipdb; ipdb.set_trace()
|
# import ipdb; ipdb.set_trace()
|
||||||
print("breeding")
|
print("breeding")
|
||||||
new_brains = genetic_reproduction(parents_pool)
|
new_brains = genetic_reproduction(parents_pool)
|
||||||
print(f'building {len(new_brains)} cars with new brains')
|
print(f"building {len(new_brains)} cars with new brains")
|
||||||
all_cars.empty()
|
all_cars.empty()
|
||||||
for b in new_brains :
|
for b in new_brains:
|
||||||
all_cars.add(Car(brain=b))
|
all_cars.add(Car(brain=b))
|
||||||
print("Waiting before new run")
|
print("Waiting before new run")
|
||||||
for x in range(1) :
|
for x in range(1):
|
||||||
time.sleep(0.5)
|
time.sleep(0.5)
|
||||||
pygame.display.flip()
|
pygame.display.flip()
|
||||||
|
|
||||||
|
|
||||||
while True :
|
while True:
|
||||||
run_round(all_cars)
|
run_round(all_cars)
|
||||||
pygame.display.flip()
|
pygame.display.flip()
|
||||||
clock.tick(24)
|
clock.tick(24)
|
||||||
|
|||||||
58
maps.py
58
maps.py
@@ -1,40 +1,42 @@
|
|||||||
from params import GX, GY
|
from params import GX, GY
|
||||||
|
|
||||||
def generate_map_1() :
|
|
||||||
|
def generate_map_1():
|
||||||
path = [
|
path = [
|
||||||
(25, int(GY-25)),
|
(25, int(GY - 25)),
|
||||||
(int(GX/2), int(GY-25)),
|
(int(GX / 2), int(GY - 25)),
|
||||||
(int(GX/2 + 75), int(GY-150)),
|
(int(GX / 2 + 75), int(GY - 150)),
|
||||||
(int(GX/2 + 150), int(GY-150)),
|
(int(GX / 2 + 150), int(GY - 150)),
|
||||||
(int(GX -75), int(GY/2)),
|
(int(GX - 75), int(GY / 2)),
|
||||||
(int(GX - 100), int(GY/2 - 75)),
|
(int(GX - 100), int(GY / 2 - 75)),
|
||||||
(int(GX - 100), int(GY/2 - 150)),
|
(int(GX - 100), int(GY / 2 - 150)),
|
||||||
(int(GX -50), int( GY/4 )),
|
(int(GX - 50), int(GY / 4)),
|
||||||
(int(3*GX/4 - 50), int(50)),
|
(int(3 * GX / 4 - 50), int(50)),
|
||||||
(int(50), int(50)),
|
(int(50), int(50)),
|
||||||
(int(100), int(GY/2)),
|
(int(100), int(GY / 2)),
|
||||||
(25, int(GY-25)),
|
(25, int(GY - 25)),
|
||||||
]
|
]
|
||||||
|
|
||||||
path2 = [
|
path2 = [
|
||||||
(100, int(GY-85)),
|
(100, int(GY - 85)),
|
||||||
(int(GX/2 - 50 ), int(GY-85)),
|
(int(GX / 2 - 50), int(GY - 85)),
|
||||||
(int(GX/2 + 50), int(GY-210)),
|
(int(GX / 2 + 50), int(GY - 210)),
|
||||||
(int(GX/2 + 110), int(GY-210)),
|
(int(GX / 2 + 110), int(GY - 210)),
|
||||||
(int(GX - 170), int(GY/2 + 30)),
|
(int(GX - 170), int(GY / 2 + 30)),
|
||||||
(int(GX - 200 ), int(GY/2 - 20)),
|
(int(GX - 200), int(GY / 2 - 20)),
|
||||||
(int(GX - 200), int(GY/2 - 200)),
|
(int(GX - 200), int(GY / 2 - 200)),
|
||||||
(int(GX -170), int( GY/4 -20)),
|
(int(GX - 170), int(GY / 4 - 20)),
|
||||||
(int(3*GX/4 - 100), int(120)),
|
(int(3 * GX / 4 - 100), int(120)),
|
||||||
(int(120), int(120)),
|
(int(120), int(120)),
|
||||||
(int(175), int(GY/2)),
|
(int(175), int(GY / 2)),
|
||||||
(100, int(GY-85)),
|
(100, int(GY - 85)),
|
||||||
]
|
]
|
||||||
|
|
||||||
lines = [[path[i], path[i+1]] for i in range(len(path)-1)]
|
lines = [[path[i], path[i + 1]] for i in range(len(path) - 1)]
|
||||||
lines2 = [[path2[i], path2[i+1]] for i in range(len(path2)-1)]
|
lines2 = [[path2[i], path2[i + 1]] for i in range(len(path2) - 1)]
|
||||||
|
|
||||||
lines = lines + lines2
|
lines = lines + lines2
|
||||||
return lines
|
return lines
|
||||||
|
|
||||||
map1 = generate_map_1()
|
|
||||||
|
map1 = generate_map_1()
|
||||||
|
|||||||
26
params.py
26
params.py
@@ -1,21 +1,21 @@
|
|||||||
import pygame
|
import pygame
|
||||||
from pygame.locals import HWSURFACE, DOUBLEBUF
|
from pygame.locals import HWSURFACE, DOUBLEBUF
|
||||||
|
|
||||||
FLAGS = HWSURFACE | DOUBLEBUF #| FULLSCREEN
|
FLAGS = HWSURFACE | DOUBLEBUF # | FULLSCREEN
|
||||||
|
|
||||||
GX = 1000
|
GX = 1000
|
||||||
GY = 1000
|
GY = 1000
|
||||||
CELL_COLOR = (80,80,80)
|
CELL_COLOR = (80, 80, 80)
|
||||||
CAR_SIZE = 20
|
CAR_SIZE = 20
|
||||||
CAR_MAX_SPEED = 100
|
CAR_MAX_SPEED = 100
|
||||||
CAR_MAX_FITNESS = 100
|
CAR_MAX_FITNESS = 100
|
||||||
CAR_STEERING_FACTOR = 10
|
CAR_STEERING_FACTOR = 10
|
||||||
VISION_LENGTH = 60
|
VISION_LENGTH = 60
|
||||||
VISION_SPAN = 35 # degrees
|
VISION_SPAN = 35 # degrees
|
||||||
THROTTLE_POWER = 3
|
THROTTLE_POWER = 3
|
||||||
|
|
||||||
MUTATION_RATE = 0.01
|
MUTATION_RATE = 0.01
|
||||||
SELECTION_ALG = "kway" # roulette
|
SELECTION_ALG = "kway" # roulette
|
||||||
KWAY_TOURNAMENT_PLAYERS = 3
|
KWAY_TOURNAMENT_PLAYERS = 3
|
||||||
|
|
||||||
pygame.init()
|
pygame.init()
|
||||||
|
|||||||
42
trigo.py
42
trigo.py
@@ -1,45 +1,47 @@
|
|||||||
#!/usr/bin/env python
|
#!/usr/bin/env python
|
||||||
import math
|
import math
|
||||||
|
|
||||||
|
|
||||||
def angle_to_vector(angle):
|
def angle_to_vector(angle):
|
||||||
angle=angle*math.pi/180
|
angle = angle * math.pi / 180
|
||||||
return [math.cos(angle), math.sin(angle)]
|
return [math.cos(angle), math.sin(angle)]
|
||||||
|
|
||||||
|
|
||||||
def get_line_feats(point1, point2):
|
def get_line_feats(point1, point2):
|
||||||
x1,y1 = point1
|
x1, y1 = point1
|
||||||
x2,y2 = point2
|
x2, y2 = point2
|
||||||
|
|
||||||
# if x1 == x2 :
|
# if x1 == x2 :
|
||||||
# x1=x1+1
|
# x1=x1+1
|
||||||
a = (y1-y2)/(x1-x2)
|
a = (y1 - y2) / (x1 - x2)
|
||||||
b = y2 - a * x2
|
b = y2 - a * x2
|
||||||
return a,b
|
return a, b
|
||||||
|
|
||||||
|
|
||||||
def segments_intersection(line1, line2):
|
def segments_intersection(line1, line2):
|
||||||
p1,p2 = line1
|
p1, p2 = line1
|
||||||
p3,p4 = line2
|
p3, p4 = line2
|
||||||
if p1[0] == p2[0] :
|
if p1[0] == p2[0]:
|
||||||
p1 = (p1[0] + 1, p1[1])
|
p1 = (p1[0] + 1, p1[1])
|
||||||
if p3[0] == p4[0] :
|
if p3[0] == p4[0]:
|
||||||
p3 = (p3[0] + 1, p3[1])
|
p3 = (p3[0] + 1, p3[1])
|
||||||
|
|
||||||
|
a1, b1 = get_line_feats(p1, p2)
|
||||||
|
a2, b2 = get_line_feats(p3, p4)
|
||||||
|
|
||||||
a1,b1 = get_line_feats(p1,p2)
|
if a1 == a2:
|
||||||
a2,b2 = get_line_feats(p3,p4)
|
return None # parrallel lines
|
||||||
|
|
||||||
if a1==a2 :
|
x = (b2 - b1) / (a1 - a2)
|
||||||
return None # parrallel lines
|
|
||||||
|
|
||||||
x = (b2-b1)/(a1-a2)
|
|
||||||
|
|
||||||
if min(p1[0], p2[0]) <= x <= max (p1[0], p2[0]) and min(p3[0], p4[0]) <= x <= max (p3[0], p4[0]) :
|
if min(p1[0], p2[0]) <= x <= max(p1[0], p2[0]) and min(p3[0], p4[0]) <= x <= max(
|
||||||
|
p3[0], p4[0]
|
||||||
|
):
|
||||||
y = a1 * x + b1
|
y = a1 * x + b1
|
||||||
return x,y
|
return x, y
|
||||||
else :
|
else:
|
||||||
return None # intersect is outside segments
|
return None # intersect is outside segments
|
||||||
|
|
||||||
|
|
||||||
def distance(point1, point2):
|
def distance(point1, point2):
|
||||||
return math.hypot(point1[0] - point2[0], point1[1] - point2[1])
|
return math.hypot(point1[0] - point2[0], point1[1] - point2[1])
|
||||||
|
|||||||
Reference in New Issue
Block a user