blacked all
This commit is contained in:
BIN
Confirmation_PP_FR8039550.pdf
Normal file
BIN
Confirmation_PP_FR8039550.pdf
Normal file
Binary file not shown.
45
brain.py
45
brain.py
@@ -1,37 +1,50 @@
|
||||
import numpy as np
|
||||
import random
|
||||
|
||||
def mat_mult(A,B):
|
||||
return [[sum([A[i][m]*B[m][j] for m in range(len(A[0]))]) for j in range(len(B[0]))] for i in range(len(A))]
|
||||
|
||||
def mat_mult(A, B):
|
||||
return [
|
||||
[sum([A[i][m] * B[m][j] for m in range(len(A[0]))]) for j in range(len(B[0]))]
|
||||
for i in range(len(A))
|
||||
]
|
||||
|
||||
|
||||
class Neural_Network(object):
|
||||
# inspired from https://enlight.nyc/projects/neural-network/
|
||||
def __init__(self, W1=None, W2=None):
|
||||
#parameters
|
||||
# parameters
|
||||
self.inputSize = 3
|
||||
self.outputSize = 2
|
||||
self.hiddenSize = 3
|
||||
self.fitness = 0
|
||||
|
||||
#weights
|
||||
# weights
|
||||
if W1 is not None:
|
||||
self.W1=W1
|
||||
else :
|
||||
self.W1 = np.random.randn(self.inputSize, self.hiddenSize) # weights from input to hidden layer
|
||||
self.W1 = W1
|
||||
else:
|
||||
self.W1 = np.random.randn(
|
||||
self.inputSize, self.hiddenSize
|
||||
) # weights from input to hidden layer
|
||||
|
||||
if W2 is not None:
|
||||
self.W2=W2
|
||||
else :
|
||||
self.W2 = np.random.randn(self.hiddenSize, self.outputSize) # weights from hidden to output layer
|
||||
self.W2 = W2
|
||||
else:
|
||||
self.W2 = np.random.randn(
|
||||
self.hiddenSize, self.outputSize
|
||||
) # weights from hidden to output layer
|
||||
# self.w1 = [[random.random() for i in range(self.hiddenSize)] for i in range(self.inputSize)]
|
||||
# self.w2 = [[random.random() for i in range(self.outputSize)] for i in range(self.hiddenSize)]
|
||||
|
||||
def predict(self, X):
|
||||
#forward propagation through our network
|
||||
self.z = np.dot(X, self.W1) # dot product of X (input) and first set of 3x2 weights
|
||||
self.z2 = self.sigmoid(self.z) # activation function
|
||||
self.z3 = np.dot(self.z2, self.W2) # dot product of hidden layer (z2) and second set of 3x1 weights
|
||||
o = self.sigmoid(self.z3) # final activation function
|
||||
# forward propagation through our network
|
||||
self.z = np.dot(
|
||||
X, self.W1
|
||||
) # dot product of X (input) and first set of 3x2 weights
|
||||
self.z2 = self.sigmoid(self.z) # activation function
|
||||
self.z3 = np.dot(
|
||||
self.z2, self.W2
|
||||
) # dot product of hidden layer (z2) and second set of 3x1 weights
|
||||
o = self.sigmoid(self.z3) # final activation function
|
||||
# self.z = mat_mult(X, self.w1) # dot product of X (input) and first set of 3x2 weights
|
||||
# self.z2 = self.sigmoid(self.z) # activation function
|
||||
# self.z3 = mat_mult(self.z2, self.w2) # dot product of hidden layer (z2) and second set of 3x1 weights
|
||||
@@ -40,4 +53,4 @@ class Neural_Network(object):
|
||||
|
||||
def sigmoid(self, s):
|
||||
# activation function
|
||||
return 1/(1+np.exp(-s)) -0.5
|
||||
return 1 / (1 + np.exp(-s)) - 0.5
|
||||
|
||||
115
car.py
115
car.py
@@ -4,10 +4,20 @@ import random
|
||||
import pygame
|
||||
|
||||
from brain import Neural_Network
|
||||
from params import GY, CAR_MAX_SPEED, CAR_MAX_FITNESS, CAR_SIZE, CAR_STEERING_FACTOR, VISION_LENGTH, VISION_SPAN, THROTTLE_POWER, screen
|
||||
from params import (
|
||||
GY,
|
||||
CAR_MAX_SPEED,
|
||||
CAR_MAX_FITNESS,
|
||||
CAR_SIZE,
|
||||
CAR_STEERING_FACTOR,
|
||||
VISION_LENGTH,
|
||||
VISION_SPAN,
|
||||
THROTTLE_POWER,
|
||||
screen,
|
||||
)
|
||||
from trigo import angle_to_vector, get_line_feats, segments_intersection, distance
|
||||
|
||||
IMG = pygame.image.load("car20.png")#.convert()
|
||||
IMG = pygame.image.load("car20.png") # .convert()
|
||||
|
||||
|
||||
class Car(pygame.sprite.Sprite):
|
||||
@@ -22,8 +32,8 @@ class Car(pygame.sprite.Sprite):
|
||||
self.image = self.original_image
|
||||
|
||||
self.rect = self.image.get_rect()
|
||||
self.vision_length = VISION_LENGTH # line liength
|
||||
self.vision_span = VISION_SPAN # degrees
|
||||
self.vision_length = VISION_LENGTH # line liength
|
||||
self.vision_span = VISION_SPAN # degrees
|
||||
self.draw_sensors = False
|
||||
|
||||
# lets add 3 sensors as a start
|
||||
@@ -37,11 +47,11 @@ class Car(pygame.sprite.Sprite):
|
||||
self.left_sensor = None
|
||||
self.right_sensor = None
|
||||
self.sensors = [self.left_sensor, self.center_sensor, self.right_sensor]
|
||||
self.probes = [self.vision_length] *3
|
||||
self.probes = [self.vision_length] * 3
|
||||
|
||||
if brain :
|
||||
if brain:
|
||||
self.brain = brain
|
||||
else :
|
||||
else:
|
||||
self.brain = Neural_Network()
|
||||
|
||||
self.reset_car_pos()
|
||||
@@ -52,9 +62,9 @@ class Car(pygame.sprite.Sprite):
|
||||
|
||||
def reset_car_pos(self):
|
||||
self.rect.center = (
|
||||
75 - int(random.random()*20) - 10,
|
||||
GY -50 - int(random.random()*20)-10
|
||||
)
|
||||
75 - int(random.random() * 20) - 10,
|
||||
GY - 50 - int(random.random() * 20) - 10,
|
||||
)
|
||||
self.speed = 1
|
||||
self.heading = random.random() * 20
|
||||
self.heading_change = random.random() * 30
|
||||
@@ -62,38 +72,58 @@ class Car(pygame.sprite.Sprite):
|
||||
def update_sensors(self):
|
||||
center = self.rect.center
|
||||
vc = angle_to_vector(self.heading)
|
||||
self.center_sensor = [center, (int(self.vision_length * vc[0] + center[0]), int(-self.vision_length * vc[1] + center[1]))]
|
||||
self.center_sensor = [
|
||||
center,
|
||||
(
|
||||
int(self.vision_length * vc[0] + center[0]),
|
||||
int(-self.vision_length * vc[1] + center[1]),
|
||||
),
|
||||
]
|
||||
|
||||
vl = angle_to_vector(self.heading+self.vision_span)
|
||||
self.left_sensor = [center, (int(self.vision_length * vl[0] + center[0]), int(-self.vision_length * vl[1] + center[1]))]
|
||||
|
||||
vr = angle_to_vector(self.heading-self.vision_span)
|
||||
self.right_sensor = [center, (int(self.vision_length * vr[0] + center[0]), int(-self.vision_length * vr[1] + center[1]))]
|
||||
vl = angle_to_vector(self.heading + self.vision_span)
|
||||
self.left_sensor = [
|
||||
center,
|
||||
(
|
||||
int(self.vision_length * vl[0] + center[0]),
|
||||
int(-self.vision_length * vl[1] + center[1]),
|
||||
),
|
||||
]
|
||||
|
||||
vr = angle_to_vector(self.heading - self.vision_span)
|
||||
self.right_sensor = [
|
||||
center,
|
||||
(
|
||||
int(self.vision_length * vr[0] + center[0]),
|
||||
int(-self.vision_length * vr[1] + center[1]),
|
||||
),
|
||||
]
|
||||
|
||||
def update_position(self):
|
||||
vec = angle_to_vector(self.heading)
|
||||
old_center = self.rect.center
|
||||
self.rect.center = (self.speed * vec[0] / 2 + old_center[0], -self.speed * vec[1] / 2 + old_center[1])
|
||||
self.rect.center = (
|
||||
self.speed * vec[0] / 2 + old_center[0],
|
||||
-self.speed * vec[1] / 2 + old_center[1],
|
||||
)
|
||||
self.update_sensors()
|
||||
self.distance_run += int(distance(old_center, self.rect.center))
|
||||
self.brain.fitness = int(math.sqrt(self.distance_run))
|
||||
|
||||
|
||||
|
||||
def probe_lines_proximity(self, lines):
|
||||
# print(self.center_sensor, lines[0])
|
||||
self.probes = [self.vision_length*2] *3
|
||||
for idx,sensor in enumerate([self.left_sensor, self.center_sensor, self.right_sensor]) :
|
||||
for line in lines :
|
||||
self.probes = [self.vision_length * 2] * 3
|
||||
for idx, sensor in enumerate(
|
||||
[self.left_sensor, self.center_sensor, self.right_sensor]
|
||||
):
|
||||
for line in lines:
|
||||
ip = segments_intersection(sensor, line)
|
||||
# print(ip)
|
||||
if ip :
|
||||
if self.draw_sensors :
|
||||
pygame.draw.circle(screen, (125,125,255), ip, 4, 2)
|
||||
dist = int(distance(ip,self.rect.center))
|
||||
if ip:
|
||||
if self.draw_sensors:
|
||||
pygame.draw.circle(screen, (125, 125, 255), ip, 4, 2)
|
||||
dist = int(distance(ip, self.rect.center))
|
||||
self.probes[idx] = min(dist, self.probes[idx])
|
||||
if dist < 1.2 * self.speed or self.speed < 0.01 :
|
||||
if dist < 1.2 * self.speed or self.speed < 0.01:
|
||||
self.run = False
|
||||
self.speed = 0
|
||||
# print(f'Car {id(self)} crashed')
|
||||
@@ -103,13 +133,11 @@ class Car(pygame.sprite.Sprite):
|
||||
# self.probes[idx] = self.vision_length * 2
|
||||
# print(self.probes)
|
||||
|
||||
|
||||
def probe_brain(self):
|
||||
res = self.brain.predict(np.array(self.probes))
|
||||
self.heading_change = res[0] * 15
|
||||
self.throttle = res[1] * 10
|
||||
|
||||
|
||||
def update(self):
|
||||
# rotate
|
||||
old_center = self.rect.center
|
||||
@@ -117,9 +145,9 @@ class Car(pygame.sprite.Sprite):
|
||||
self.rect = self.image.get_rect()
|
||||
self.rect.center = old_center
|
||||
self.update_position()
|
||||
if self.speed < 0.01 or self.brain.fitness > CAR_MAX_FITNESS :
|
||||
if self.speed < 0.01 or self.brain.fitness > CAR_MAX_FITNESS:
|
||||
self.run = False
|
||||
print(f'Car {id(self)} crashed')
|
||||
print(f"Car {id(self)} crashed")
|
||||
# print(
|
||||
# 'id', id(self),
|
||||
# 'Speed', self.speed,
|
||||
@@ -128,27 +156,30 @@ class Car(pygame.sprite.Sprite):
|
||||
# 'heading change', self.heading_change,
|
||||
# )
|
||||
|
||||
if self.speed :
|
||||
if self.speed:
|
||||
self.heading += self.heading_change * CAR_STEERING_FACTOR / self.speed
|
||||
self.heading = self.heading % 360
|
||||
|
||||
self.speed += self.throttle #THROTTLE_POWER
|
||||
self.speed += self.throttle # THROTTLE_POWER
|
||||
# if self.throttle :
|
||||
# self.speed += self.throttle #THROTTLE_POWER
|
||||
# self.speed += self.throttle #THROTTLE_POWER
|
||||
# else :
|
||||
# self.speed -= self.throttle #THROTTLE_POWER
|
||||
# self.speed -= self.throttle #THROTTLE_POWER
|
||||
|
||||
self.speed = max(0, self.speed)
|
||||
self.speed = min(self.speed, CAR_MAX_SPEED)
|
||||
|
||||
super().update()
|
||||
|
||||
|
||||
def show_features(self):
|
||||
if self.draw_sensors:
|
||||
pygame.draw.line(screen, (255,0,0), self.center_sensor[0], self.center_sensor[1])
|
||||
pygame.draw.line(screen, (0,255,0), self.left_sensor[0], self.left_sensor[1])
|
||||
pygame.draw.line(screen, (0,0,255), self.right_sensor[0], self.right_sensor[1])
|
||||
pygame.draw.circle(screen, (125,255,125), self.rect.center, 4, 2)
|
||||
|
||||
|
||||
pygame.draw.line(
|
||||
screen, (255, 0, 0), self.center_sensor[0], self.center_sensor[1]
|
||||
)
|
||||
pygame.draw.line(
|
||||
screen, (0, 255, 0), self.left_sensor[0], self.left_sensor[1]
|
||||
)
|
||||
pygame.draw.line(
|
||||
screen, (0, 0, 255), self.right_sensor[0], self.right_sensor[1]
|
||||
)
|
||||
pygame.draw.circle(screen, (125, 255, 125), self.rect.center, 4, 2)
|
||||
|
||||
47
genetics.py
47
genetics.py
@@ -3,53 +3,46 @@ import random
|
||||
from brain import Neural_Network
|
||||
from params import MUTATION_RATE, SELECTION_ALG, KWAY_TOURNAMENT_PLAYERS
|
||||
|
||||
|
||||
def kway_selection(brains, exclude=None):
|
||||
tourn_pool = []
|
||||
best_play = None
|
||||
if exclude :
|
||||
if exclude:
|
||||
brains = [x for x in brains if x != exclude]
|
||||
for x in range(KWAY_TOURNAMENT_PLAYERS):
|
||||
new_play = random.choice(brains)
|
||||
while new_play in tourn_pool :
|
||||
while new_play in tourn_pool:
|
||||
new_play = random.choice(brains)
|
||||
if not best_play or best_play.fitness < new_play.fitness :
|
||||
if not best_play or best_play.fitness < new_play.fitness:
|
||||
best_play = new_play
|
||||
return best_play
|
||||
|
||||
|
||||
def genetic_selection(brains):
|
||||
parents_pool = []
|
||||
half_pop = int(len(brains)/2)
|
||||
half_pop = int(len(brains) / 2)
|
||||
|
||||
if SELECTION_ALG == "kway":
|
||||
for x in range(half_pop) :
|
||||
for x in range(half_pop):
|
||||
p1 = kway_selection(brains)
|
||||
p2 = kway_selection(brains, exclude=p1)
|
||||
parents_pool.append([
|
||||
p1,
|
||||
p2
|
||||
])
|
||||
parents_pool.append([p1, p2])
|
||||
|
||||
|
||||
|
||||
elif SELECTION_ALG == "roulette" :
|
||||
elif SELECTION_ALG == "roulette":
|
||||
# does not seem very optimized... TBR
|
||||
# constitute a list where every brain is represented
|
||||
# proportionnally to its relative fitness
|
||||
wheel = []
|
||||
for b in brains :
|
||||
for b in brains:
|
||||
wheel += [b] * b.fitness
|
||||
|
||||
|
||||
tot_fitness = len(wheel)
|
||||
|
||||
# selection of pool/2 pair of parents to reproduce
|
||||
for _ in range(half_pop):
|
||||
idx1 = round(random.random()*tot_fitness - 1)
|
||||
idx2 = round(random.random()*tot_fitness - 1)
|
||||
parents_pool.append([
|
||||
wheel[idx1],
|
||||
wheel[idx2]
|
||||
])
|
||||
idx1 = round(random.random() * tot_fitness - 1)
|
||||
idx2 = round(random.random() * tot_fitness - 1)
|
||||
parents_pool.append([wheel[idx1], wheel[idx2]])
|
||||
return parents_pool
|
||||
|
||||
|
||||
@@ -57,13 +50,13 @@ def cross_mutate_genes(p1_gene, p2_gene):
|
||||
child = []
|
||||
p1_gene = list(p1_gene)
|
||||
p2_gene = list(p1_gene)
|
||||
for idx,x in enumerate(p2_gene):
|
||||
if random.random() > 0.5 :
|
||||
for idx, x in enumerate(p2_gene):
|
||||
if random.random() > 0.5:
|
||||
choice = p1_gene[idx]
|
||||
else :
|
||||
else:
|
||||
choice = p2_gene[idx]
|
||||
# Mutation
|
||||
if random.random() < MUTATION_RATE :
|
||||
if random.random() < MUTATION_RATE:
|
||||
choice[random.randint(0, len(choice) - 1)] = random.random()
|
||||
print("Mutation !")
|
||||
child.append(choice)
|
||||
@@ -73,7 +66,7 @@ def cross_mutate_genes(p1_gene, p2_gene):
|
||||
def genetic_reproduction(parents_pool):
|
||||
# every pair of parents will produce a mixed child
|
||||
new_pop = []
|
||||
for [p1,p2] in parents_pool:
|
||||
for [p1, p2] in parents_pool:
|
||||
W1_kid = cross_mutate_genes(p1.W1, p2.W1)
|
||||
W2_kid = cross_mutate_genes(p1.W2, p2.W2)
|
||||
c_brain1 = Neural_Network(W1=W1_kid, W2=W2_kid)
|
||||
@@ -81,7 +74,3 @@ def genetic_reproduction(parents_pool):
|
||||
new_pop.append(c_brain1)
|
||||
new_pop.append(c_brain2)
|
||||
return new_pop
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
30
main.py
30
main.py
@@ -10,15 +10,13 @@ from maps import map1
|
||||
from params import CELL_COLOR, screen
|
||||
|
||||
|
||||
|
||||
#https://medium.com/intel-student-ambassadors/demystifying-genetic-algorithms-to-enhance-neural-networks-cde902384b6e
|
||||
# https://medium.com/intel-student-ambassadors/demystifying-genetic-algorithms-to-enhance-neural-networks-cde902384b6e
|
||||
clock = pygame.time.Clock()
|
||||
|
||||
|
||||
map_lines = map1
|
||||
|
||||
|
||||
|
||||
all_cars = pygame.sprite.Group()
|
||||
|
||||
for x in range(100):
|
||||
@@ -28,20 +26,20 @@ for x in range(100):
|
||||
|
||||
def run_round(all_cars):
|
||||
running_cars = True
|
||||
while running_cars :
|
||||
while running_cars:
|
||||
running_cars = False
|
||||
screen.fill(CELL_COLOR)
|
||||
all_cars.draw(screen)
|
||||
for c in all_cars :
|
||||
for c in all_cars:
|
||||
c.show_features()
|
||||
if c.run :
|
||||
if c.run:
|
||||
running_cars = True
|
||||
c.probe_lines_proximity(map_lines)
|
||||
c.probe_brain()
|
||||
c.update()
|
||||
|
||||
for line in map_lines :
|
||||
pygame.draw.line(screen, (255,255,255), line[0], line[1])
|
||||
for line in map_lines:
|
||||
pygame.draw.line(screen, (255, 255, 255), line[0], line[1])
|
||||
|
||||
pygame.display.flip()
|
||||
clock.tick(48)
|
||||
@@ -49,26 +47,26 @@ def run_round(all_cars):
|
||||
# for c in all_cars :
|
||||
# print(f"Car {id(c)} Fitness : {c.brain.fitness})")
|
||||
|
||||
print('Collecting brains')
|
||||
print("Collecting brains")
|
||||
brains = [c.brain for c in all_cars]
|
||||
print(f"Max fitness = {max([b.fitness for b in brains])}" )
|
||||
print(f"Avg fitness = {sum([b.fitness for b in brains])/len(brains)}" )
|
||||
print('selecting')
|
||||
print(f"Max fitness = {max([b.fitness for b in brains])}")
|
||||
print(f"Avg fitness = {sum([b.fitness for b in brains])/len(brains)}")
|
||||
print("selecting")
|
||||
parents_pool = genetic_selection(brains)
|
||||
# import ipdb; ipdb.set_trace()
|
||||
print("breeding")
|
||||
new_brains = genetic_reproduction(parents_pool)
|
||||
print(f'building {len(new_brains)} cars with new brains')
|
||||
print(f"building {len(new_brains)} cars with new brains")
|
||||
all_cars.empty()
|
||||
for b in new_brains :
|
||||
for b in new_brains:
|
||||
all_cars.add(Car(brain=b))
|
||||
print("Waiting before new run")
|
||||
for x in range(1) :
|
||||
for x in range(1):
|
||||
time.sleep(0.5)
|
||||
pygame.display.flip()
|
||||
|
||||
|
||||
while True :
|
||||
while True:
|
||||
run_round(all_cars)
|
||||
pygame.display.flip()
|
||||
clock.tick(24)
|
||||
|
||||
56
maps.py
56
maps.py
@@ -1,40 +1,42 @@
|
||||
from params import GX, GY
|
||||
|
||||
def generate_map_1() :
|
||||
|
||||
def generate_map_1():
|
||||
path = [
|
||||
(25, int(GY-25)),
|
||||
(int(GX/2), int(GY-25)),
|
||||
(int(GX/2 + 75), int(GY-150)),
|
||||
(int(GX/2 + 150), int(GY-150)),
|
||||
(int(GX -75), int(GY/2)),
|
||||
(int(GX - 100), int(GY/2 - 75)),
|
||||
(int(GX - 100), int(GY/2 - 150)),
|
||||
(int(GX -50), int( GY/4 )),
|
||||
(int(3*GX/4 - 50), int(50)),
|
||||
(int(50), int(50)),
|
||||
(int(100), int(GY/2)),
|
||||
(25, int(GY-25)),
|
||||
(25, int(GY - 25)),
|
||||
(int(GX / 2), int(GY - 25)),
|
||||
(int(GX / 2 + 75), int(GY - 150)),
|
||||
(int(GX / 2 + 150), int(GY - 150)),
|
||||
(int(GX - 75), int(GY / 2)),
|
||||
(int(GX - 100), int(GY / 2 - 75)),
|
||||
(int(GX - 100), int(GY / 2 - 150)),
|
||||
(int(GX - 50), int(GY / 4)),
|
||||
(int(3 * GX / 4 - 50), int(50)),
|
||||
(int(50), int(50)),
|
||||
(int(100), int(GY / 2)),
|
||||
(25, int(GY - 25)),
|
||||
]
|
||||
|
||||
path2 = [
|
||||
(100, int(GY-85)),
|
||||
(int(GX/2 - 50 ), int(GY-85)),
|
||||
(int(GX/2 + 50), int(GY-210)),
|
||||
(int(GX/2 + 110), int(GY-210)),
|
||||
(int(GX - 170), int(GY/2 + 30)),
|
||||
(int(GX - 200 ), int(GY/2 - 20)),
|
||||
(int(GX - 200), int(GY/2 - 200)),
|
||||
(int(GX -170), int( GY/4 -20)),
|
||||
(int(3*GX/4 - 100), int(120)),
|
||||
(int(120), int(120)),
|
||||
(int(175), int(GY/2)),
|
||||
(100, int(GY-85)),
|
||||
(100, int(GY - 85)),
|
||||
(int(GX / 2 - 50), int(GY - 85)),
|
||||
(int(GX / 2 + 50), int(GY - 210)),
|
||||
(int(GX / 2 + 110), int(GY - 210)),
|
||||
(int(GX - 170), int(GY / 2 + 30)),
|
||||
(int(GX - 200), int(GY / 2 - 20)),
|
||||
(int(GX - 200), int(GY / 2 - 200)),
|
||||
(int(GX - 170), int(GY / 4 - 20)),
|
||||
(int(3 * GX / 4 - 100), int(120)),
|
||||
(int(120), int(120)),
|
||||
(int(175), int(GY / 2)),
|
||||
(100, int(GY - 85)),
|
||||
]
|
||||
|
||||
lines = [[path[i], path[i+1]] for i in range(len(path)-1)]
|
||||
lines2 = [[path2[i], path2[i+1]] for i in range(len(path2)-1)]
|
||||
lines = [[path[i], path[i + 1]] for i in range(len(path) - 1)]
|
||||
lines2 = [[path2[i], path2[i + 1]] for i in range(len(path2) - 1)]
|
||||
|
||||
lines = lines + lines2
|
||||
return lines
|
||||
|
||||
|
||||
map1 = generate_map_1()
|
||||
26
params.py
26
params.py
@@ -1,21 +1,21 @@
|
||||
import pygame
|
||||
from pygame.locals import HWSURFACE, DOUBLEBUF
|
||||
|
||||
FLAGS = HWSURFACE | DOUBLEBUF #| FULLSCREEN
|
||||
FLAGS = HWSURFACE | DOUBLEBUF # | FULLSCREEN
|
||||
|
||||
GX = 1000
|
||||
GY = 1000
|
||||
CELL_COLOR = (80,80,80)
|
||||
CAR_SIZE = 20
|
||||
CAR_MAX_SPEED = 100
|
||||
CAR_MAX_FITNESS = 100
|
||||
CAR_STEERING_FACTOR = 10
|
||||
VISION_LENGTH = 60
|
||||
VISION_SPAN = 35 # degrees
|
||||
THROTTLE_POWER = 3
|
||||
GX = 1000
|
||||
GY = 1000
|
||||
CELL_COLOR = (80, 80, 80)
|
||||
CAR_SIZE = 20
|
||||
CAR_MAX_SPEED = 100
|
||||
CAR_MAX_FITNESS = 100
|
||||
CAR_STEERING_FACTOR = 10
|
||||
VISION_LENGTH = 60
|
||||
VISION_SPAN = 35 # degrees
|
||||
THROTTLE_POWER = 3
|
||||
|
||||
MUTATION_RATE = 0.01
|
||||
SELECTION_ALG = "kway" # roulette
|
||||
MUTATION_RATE = 0.01
|
||||
SELECTION_ALG = "kway" # roulette
|
||||
KWAY_TOURNAMENT_PLAYERS = 3
|
||||
|
||||
pygame.init()
|
||||
|
||||
40
trigo.py
40
trigo.py
@@ -1,44 +1,46 @@
|
||||
#!/usr/bin/env python
|
||||
import math
|
||||
|
||||
|
||||
def angle_to_vector(angle):
|
||||
angle=angle*math.pi/180
|
||||
angle = angle * math.pi / 180
|
||||
return [math.cos(angle), math.sin(angle)]
|
||||
|
||||
|
||||
def get_line_feats(point1, point2):
|
||||
x1,y1 = point1
|
||||
x2,y2 = point2
|
||||
x1, y1 = point1
|
||||
x2, y2 = point2
|
||||
|
||||
# if x1 == x2 :
|
||||
# x1=x1+1
|
||||
a = (y1-y2)/(x1-x2)
|
||||
a = (y1 - y2) / (x1 - x2)
|
||||
b = y2 - a * x2
|
||||
return a,b
|
||||
return a, b
|
||||
|
||||
|
||||
def segments_intersection(line1, line2):
|
||||
p1,p2 = line1
|
||||
p3,p4 = line2
|
||||
if p1[0] == p2[0] :
|
||||
p1, p2 = line1
|
||||
p3, p4 = line2
|
||||
if p1[0] == p2[0]:
|
||||
p1 = (p1[0] + 1, p1[1])
|
||||
if p3[0] == p4[0] :
|
||||
if p3[0] == p4[0]:
|
||||
p3 = (p3[0] + 1, p3[1])
|
||||
|
||||
a1, b1 = get_line_feats(p1, p2)
|
||||
a2, b2 = get_line_feats(p3, p4)
|
||||
|
||||
a1,b1 = get_line_feats(p1,p2)
|
||||
a2,b2 = get_line_feats(p3,p4)
|
||||
if a1 == a2:
|
||||
return None # parrallel lines
|
||||
|
||||
if a1==a2 :
|
||||
return None # parrallel lines
|
||||
x = (b2 - b1) / (a1 - a2)
|
||||
|
||||
x = (b2-b1)/(a1-a2)
|
||||
|
||||
if min(p1[0], p2[0]) <= x <= max (p1[0], p2[0]) and min(p3[0], p4[0]) <= x <= max (p3[0], p4[0]) :
|
||||
if min(p1[0], p2[0]) <= x <= max(p1[0], p2[0]) and min(p3[0], p4[0]) <= x <= max(
|
||||
p3[0], p4[0]
|
||||
):
|
||||
y = a1 * x + b1
|
||||
return x,y
|
||||
else :
|
||||
return None # intersect is outside segments
|
||||
return x, y
|
||||
else:
|
||||
return None # intersect is outside segments
|
||||
|
||||
|
||||
def distance(point1, point2):
|
||||
|
||||
Reference in New Issue
Block a user